
The GNU Hurd

[Extended Abstract]

Gaël Le Mignot

ABSTRACT
This is an abstract of the talk given at LSM 2005, about the
GNU Hurd, its goals, its design, its features and its relation-
ship with the GNU project. This is a general presentation
of the GNU Hurd, mostly on technical aspects.

1. INTRODUCTION
1.1 What is an operating system ?
1.1.1 Historical point of view
The first computers were so expensive that only one existed
for a whole university or research department; and so slow
that it was unthinkable to interact with it in real time. This
was the era of batch processing, when programmers cre-
ated self-running programs called “batch”. Those programs
usually took several hours to run, printing huge listing as
output. Programs were run one after the other.

Then, computers became more efficient. They were still too
expensive to allow each user to have his own computer, but
there were powerful enough to allow several users to use the
same computer at once. The concept of “time-sharing” ap-
peared then. The “time-sharing” concept consists in having
a specific program (the scheduler) which quickly gives the
CPU to one program, and then to another, and so on, to
simulate simultaneous execution. Those computers had to
allow people to run several programs from different users at
once, without allowing one user to crash the computer or
read confidential data of another. The need of a “supervi-
sor” program, controlling time-slice attribution and enforc-
ing security rules was natural.

1.1.2 What does an operating system do ?
An operating system is the “supervisor” program (or set of
programs) of a computer. An operating system runs other
programs, providing services to them:

A hardware abstraction layer. There is a large choice
of hardware in the computer world. Even if we just

Permission is granted to copy, distribute and/or modify this docu-
ment under the terms of the GNU Free Documentation License, Ver-
sion 1.1 or any later version published by the Free Software Foun-
dation; with no Invariant Sections, with no Front-Cover Texts, and
with no Back-Cover Texts. A copy of the license can be found on
http://www.gnu.org/licenses/fdl.html
Unlike specified in the license, you are not forced to include the whole
license, as long as you provide a reference to it.
Libre Software MeetingJuly 5-9, 2005, Dijon, France.
Copyright (c) Gäel Le Mignot<kilobug@hurdfr.org>, 2002-05.

speak of, say, storage devices, there are IDE disks,
SCSI disks, floppy disks, tapes, USB devices, FireWire
devices, parallel port devices, ... should every program
know how to put into motion the floppy disk engine ?
Providing an hardware abstraction layer is one of the
major goals of operating systems.

Resource sharing. Resources on a computer are limited.
Be it main memory, CPU power, hard disk storage,
screen area, networking connection, or sound output,
those resources must be controlled by a supervisor pro-
gram, allowing each of the programs to access to a part
of it as needed.

Security infrastructure. All modern operating systems
can enforce several kinds of security. Security can be
used to prevent a user from accessing confidential or
private data of another user, to prevent accidental re-
moval of critical files, or to limit the damages that a
deficient program can do.

1.2 The GNU Project
1.2.1 What is Free Software ?
Free Software is software whose license gives users the four
essential freedoms. Those freedoms are:

Freedom 0 Freedom to use the software without any con-
straints, for whatever purpose the user intent to.

Freedom 1 Freedom to understand the software, and to
modify it to make it fit your needs.

Freedom 2 Freedom to distribute the software, since shar-
ing and giving is not a crime, but a social act beneficial
for the whole society.

Freedom 3 Freedom to distribute modified versions, giv-
ing you the ability to give back source code to the
community.

We believe that those freedoms are essential, and that deny-
ing someone those freedoms is immoral. Software is knowl-
edge, and knowledge belongs to the whole mankind and
should be Free.

Please remember that Free Software doesn’t deal with price
or money, but with freedom from an ethical point of view.



1.2.2 The GNU project
The GNU Project was started by Richard M. Stallman in
1983. The goal of the project is to create a full operating
system and all applications required to allow any user to
be able to use only Free Software to perform whatever task
he needs to use a computer for. GNU means “GNU is Not
Unix”, since GNU takes many ideas from Unix, but does
not intend to be “only” a Free implementation of Unix, but
to correct Unix flaws and weaknesses at the same time.

2. MONOLITHIC KERNELS AND MICRO-
KERNELS

2.1 What is a kernel ?
Since the operating system provides an hardware abstrac-
tion layer, and since it must provide resource sharing, every
access to the hardware from user programs should be done
through the operating system. To enforce this in a secure
way, and prevent malicious or buggy applications to mess up
with the hardware, a protection is needed at the hardware
level.

Hardware must provide at least two execution levels:

Kernel mode In this mode, the software has access to all
the instructions and every piece of hardware.

User mode In this mode, the software is restricted and
cannot execute some instructions, and is denied access
to some hardware (like some area of the main memory,
or direct access to the IDE bus).

So, we define two spaces at software level:

Kernel space Code running in the kernel mode is said to
be inside the kernel space.

User space Every other programs, running in user mode,
is said to be in user space.

2.2 Monolithic kernel based systems
This is the traditional design of Unix systems. Every part
which is to be accessed by most programs which cannot be
put in a library is in the kernel space:

• Device drivers

• Scheduler

• Memory handling

• File systems

• Network stacks

Many system calls are provided to applications (more than
250 for Linux 2.4), to allow them to access all those services.

This design has several flaws and limitations:

• Coding in kernel space is hard, since you cannot use
common libraries (like a full-featured libc), debugging
is harder (it’s hard to use a source-level debugger like
gdb), rebooting the computer is often needed, ... Re-
member this is not just a problem of convenience to
the developer : as debugging is harder, as difficulties
are stronger, it is likely that code is “buggier”.

• Bugs in one part of the kernel have strong side effects,
since every function in the kernel has all the privileges,
a bug in one function can corrupt data structure of
another, totally unrelated part of the kernel, or of any
running program.

• Kernels often become very huge (more than 100 MB of
source code for Linux 2.6), and difficult to maintain.

• The presence of strong side effects makes the whole
kernel less modular (remember the VM issues of Linux
2.4, some people suggested to make the VM modular,
allowing the system administrator to chose one VM
at compile time, but the impact of the VM over the
other parts of the code was so huge that the idea was
dropped). And since kernel code runs with all the
privileges at hardware level, only the system admin-
istrator can be allowed to load a module inside the
kernel space.

2.3 Micro-kernel based systems
2.3.1 Principles
Only parts which really require to be in a privileged mode
are in kernel space :

• IPC (Inter-Process Communication, see below)

• Basic scheduler, or scheduling primitives

• Basic memory handling

• Basic I/O primitives

Many critical parts are now running in user space :

• The complete scheduler

• Memory handling

• File systems

• Network stacks

2.3.2 Monoserver systems
A single user-space program (server) handles everything that
belonged to the kernel. The two most common examples are
MachOS and L4Linux (a port of Linux as a user-space server
on top of the L4 microkernel). This split allows better hard-
ware independence of the operating system itself, a slightly
easier development, and a limited improvement in overall se-
curity (since the code running in the user-space, the server
cannot directly access the hardware).

But this design still has most drawbacks of monolithic sys-
tems: if the monolithic server crashes, the whole system
crashes; it’s impossible to add code to it without being root,
changing most of the code requires a reboot, ...



2.3.3 Multiserver systems
All features are now split into a set of communicating pro-
cesses, with each of them handling only a very specific task
(like a TCP/IP server or an ext2fs server). This modularity
allows to replace components easily, an easier developement,
a far better fault-tolerance (since a crash of one of the servers
cannot corrupt the internal state of any other), and far more
flexibility for the end user.

But, like always in computer science, all those benefits come
with several drawbacks: the communication between all the
servers can slow down the whole system, and the definition
of a strict set of interfaces and protocols for communication
between those servers is an extra work to do.

3. TECHNICAL INTERLUDE: RPCS
3.1 Inter-Process Communication
An IPC is a way for a user-space program to communicate
with another one. In Unix, the most common IPC forms are
a pipe and a signal.

3.2 Remote Procedure Call
A remote procedure call, or RPC, is a specific set of IPCs,
where a client asks a server to perform a task, and then the
server acts accordingly, providing an answer in most cases.
An HTTP request can be seen as an RPC between a web
browser (client) and an httpd (server).

A typical RPC is composed of two IPCs: one from the client
to the server, with the type of the request (name of the
procedure to call for example) and the parameters of the
request; and then another one from the server to the client,
indicating the result of request, or at least that the request
was perfomed with success or with an error.

To make servers and clients easier to write, most of the
programs using a lot of RPCs (CORBA distributed systems,
or multi-server operating systems) use stubs. A “client stub”
is called natively (like a normal C function if the program
is in C), and then performs the marshalling (encoding of
the parameters according to the protocol used, being IIOP
for CORBA or Mach IPC for the GNU Hurd), the actual
request, waiting for the result, and then demarshalling it,
retuning it again as a native value. A server stub performs
similar functions for the server.

Stubs are usually generated by a stub-code generator, like
CORBA’s “idl compilers”, Mach’s “MiG” or L4’s “idl4”.
Those stubs are generated from interface files, which look a
bit like C .h files: they contain the prototypes of all RPCs,
with the datatype of the argument(s) and return value(s).
Those interface files are used both by the stub code genera-
tor, and as an API reference for the RPCs.

4. THE GNU HURD
4.1 Definition
The GNU Hurd is a set of servers, libraries and interfaces,
running on top of a micro kernel, and providing the services
which used to be inside the kernel.

4.1.1 Vocabulary
The Hurd The Hurd, or the GNU Hurd, is the set of servers,

it is not an operating system, and since it runs in user

space, it is not what we call a kernel. “Hurd” means
“Hird of Unix-Replacing Daemons” and “Hird” means
“Hurd of Interfaces Representing Depth”, but all of
them are spelled like the word “herd”, which is the
real meaning of this name: the GNU Hurd is a herd of
gnus.

GNU/Hurd GNU/Hurd, or GNU, is the full operating
system, including the micro-kernel, the Hurd, the dy-
namic linker (GNU ld) the C library (GNU libc), . . .

4.2 The Hurd’s goals
The Hurd is the core of the GNU project. Every program
running on the GNU system will rely upon the Hurd to per-
form most of all operating system related tasks. The philos-
ophy of the GNU project, as defined in the GNU manifesto,
was the philosophy leading to the Hurd design. The goal of
the GNU project is to give back the freedom to the users of
computer systems; but not only at the license level. Every
technical limitation which is not strictly necessary is a re-
duction of user freedom. The fact that non-privilegied user
in a Unix system cannot mount an ISO image (setuid does
not count), or test his own file system implementation, is a
reduction of user freedom. With its highly modular design,
the Hurd gives back some additional freedom to the users.
This is a major idea of the whole GNU project, displayed
even in the name of the project: we want to stay compat-
ible with Unix programs as much as possible, but we want
to overthrow as much limitations as we can.

Interfaces between components of the GNU Hurd were clearly
defined and fixed as soon as possible during the develop-
ment. Fixed interfaces are very important to allow users to
design their own replacement of some part of the system,
without breaking the other parts. It also suppress compati-
bility problems.

Interfaces of the GNU Hurd were designed to fill the flaws
of Unix systems. For example, there is no (standard) way in
a Unix system to create a file with no name. The commonly
used method is to create it in /tmp, and then unlink it
without closing the file descriptor. The kernel will wait for
the file descriptor to be closed before deleting it. But during
a short amount of time, the file has a name, and this causes
many security holes. Another example is notification: the
most common way to ask the kernel of Unix system to be
informed when a file is changed (SIGIO) is non-portable,
and not very flexible (in recent Unix kernels, other ways can
exist, but still lack flexibility).

All this is possible, because we have the experience of Unices
and many other operating systems.

4.3 The Hurd history



1983 Richard Stallman starts the GNU project
1988 Mach 3 is chosen as micro-kernel
1991 Mach 3 is released under a Free license
1991 Thomas Bushnell, BSG, founds the Hurd
1994 GNU/Hurd boots for the first time
1997 The Hurd version 0.2 is released
1998 Marcus Brinkmann creates Debian GNU/Hurd
2002 Debian GNU/Hurd has 4 CDs
2002 Port of the Hurd to L4 is started
2002 POSIX threads are now supported
2003 L4Ka::Pistachio 0.1 is released
2003 Ext2fs without the 2GB limit in alpha stage
2004 Ext2fs without the 2gb limit reach release candidate
2005 Ext2fs without the 2gb in Debian GNU/Hurd
2005 First program running on L4Hurd
2005 Initial Gnome port

5. THE MACH MICRO-KERNEL
5.1 History
Mach was one of the first micro-kernels. It was a project of
Carnegie-Mellon university to implement a fairly new the-
ory. It came with a lot of new concepts:

• A complex and powerful IPC layer

• It was designed for multiprocessor and even clusters

• It used external pagers

• It was the first system to clearly define the notions of
“task”, “thread”, . . .

Mach was the first micro-kernel to be successful, taken and
improved by OSF/1 and other research groups. It was the
base of MachOS, a mono-server operating system (with the
UX server running on top of the Mach microkernel and pro-
viding BSD compatibility).

5.2 What does Mach do ?
Mach does quite a lot of things for a micro-kernel:

• It handles tasks as containers (a task contains memory
areas, threads, IPC rights, . . . )

• A complex IPC system

• The virtual memory layer, with an LRU decision algo-
rithm

• A basic scheduler

• Device drivers

5.3 GNU Mach
GNU Mach was derived from OSF Mach. The last stable
version is 1.3, and should be the last of the 1.x branch. The
new 2.0 version, might be released sometime in the future,
uses the OSKit framework for device drivers (allowing nearly
all drivers from Linux 2.2 to be ported easily).

5.4 The port concept
IPC with Mach is based on ports. A port is kernel managed
entity which can be seen as a message queue, with one task
having a “receive right” on the port, and any number of
tasks having “send rights” to the port. The task having the
receive right can read the messages sent by the tasks having
send rights. Receive rights can be given to another task, and
send rights can be given, destroyed or duplicated (rights are
sent across tasks using IPCs). There is also a special “send
once” right, which can be used only once, and is often used
when waiting for an answer.

Communication across ports is asynchronous: a sending
thread is not blocked until the receiving task received the
message. This implies that all IPC messages must be copied
(either logically or physically) inside the kernel and queued
there, which slows down the IPC a lot.

6. TRANSLATORS
6.1 The translator concept
6.1.1 The naming service problem
After reading the previous parts, a question should arise in
your head: how to get a port (a send right) to a server
? Say, how to get a send right to the TCP/IP stack ? The
commonly used method is a naming service: a special server,
on which you can get a port right in exchange from a name
(like port = ns get port (ns, "pfinet"); to get a port
to the TCP/IP stack). The port to the naming service can
be given a creation time. But this has several problems:

• The naming service must have its own permission mech-
anism,

• Every server has to register to the naming service,

• It is not very flexible, and can often cause name con-
flicts.

6.1.2 The solution used in GNU/Hurd
The idea of the Hurd consists in using the whole VFS (vir-
tual filesystem) as the naming service. Every node in the
filesystem is in fact an access point to an underlying server,
called a translator.

The function “file name lookup” of the C library does a re-
cursive lookup of the specified name, and then gives a send
right to the translator listening (if allowed by the node per-
missions). For example, if you have a /home partition and
you do a request for “/home/kilobug/plop”, the file name lookup

will ask for /home/kilobug/plop to the root translator (known
by every application), which will anwser with “well, I don’t
know this, but you can ask for kilobug/plop to that server”,
and join a send right to the server handling the filesystem of
/home. Then, file name lookup will ask for kilobug/plop

to this send right, and will get a send right corresponding to
this file. RPCs like io read or io write can then be done.

If you ask for /servers/socket/pfinet you’ll get a port
right to the TCP/IP translator, and you’ll be able to do
RPC to open sockets, or send a “ping” request.

The VFS also provides the permission mechanism, through
standard Unix permissions.



6.2 Properties of a translator
A translator is a normal program, running in its own ad-
dress space, with the rights and the identity of the user who
started it. It is not a privileged process (even if many of
them, like the system-wide TCP/IP stack, were started by
the system administrator during the boot process, any user
can run a translator).

A translator is usually a highly multi-threaded program,
which can answer to different, even simultaneous, RPCs.
The RPCs can be related to file handling (like io * or dir *),
but can be completely unrelated if needed, like the proc *

RPC family of the proc server (the server handling Unix-like
processes, processes groups, signals, . . . )

6.3 Translator examples
6.3.1 ftpfs
The most common translator example is the ftpfs translator;
you can see a case of use in the figure 6.3.1.

6.3.2 crash
Another example, showing what can be done by using the
filesystem as the naming service, is the “crash” translator.
The “crash” translator is invoked when a program performs
a fatal error (like a segmentation fault). On the Hurd, there
are three available crash servers: one which just freezes the
process in memory, one which kills the process, and a last
one which kills the the process and drop a core file. The
“/server/crash” file is in fact a symlink to the selected
crash server. Switching to another crash server can be done
just by changing the link target to point to the node where
the crash server you want to use lives. symlink - which is
also a translator - redirects RPCs done to “/server/crash”
to, for example “/server/crash-suspend” which does the
expected job.

7. SECURITY INFRASTRCUTURE
7.1 Authentication tokens
The security on GNU/Hurd is based on authentication to-
kens. A token is the right for an application to perform
a specific set of tasks. Tokens are handled by the “auth”
server, a server trusted by all other pograms, and enforcing
that no one lies on which token they have. Through “auth”,
tokens can be given, destroyed, or created. Tokens can exist
for anything, for example you can imagine a token “is able
to bind ports below 1024”.

Tokens are comparable to Kerberos tickets, or POSIX cap-
atibilities.

7.2 POSIX compatibility
POSIX compatibility, with regard to authentication, is im-
plemented via specific tokens: UIDs and GIDs are only a
kind of tokens that auth can deliver. It is therefore possible
for an application to have several UIDs tokens, and as such
being able to act with different POSIX identities at the same
time. Programs can lose or give UIDs at any time during
their execution - they just need to contact auth, and the
password server (or any other auth-trusted server that can
manage authentication, for example a server that matches
a user-given and a sysadmin-provided certificates).

A specific “addauth” command (a normal, non-suided pro-
gram) can give tokens to programs. If you are running a
shell as “kilobug”, you can give the “UID kilobug” security
token to any currently running application with “addauth -u
kilobug -p [PID]”. The same way, programs can drop their
tokens, lowering their permissions.

7.2.1 Suid-ed binaries
The translator in charge of a filesystem is the one enforcing
the suid-bit. If you run “/bin/ping” as a normal user, the
ext2fs translator managing the / filesystem will give the root
security token to the ping program, before starting it. Since
a translator cannot give a security token it doesn’t have, a
translator ran by a normal user would not be able to enfore
the suid-bit, and this way there is no security risk in allowing
normal users to run translators.

7.3 Some applications
7.3.1 The password server
The password server is a very simple (around 200 code lines)
program, which can give UID and GID security tokens in
exchange of a login/password pair. A ftp server, or an ssh
server, could then run without any permission, and gives
the user-provided login/password to the password server, in
order to gain privileges and be able to answer to the user.
The huge difference with Unix systems is that the ftp or ssh
server never has root privileges (or only at bind-time, and
then drop it completly), and never has even the privileges of
a normal user before someone gives it a valid login/password
pair. A flaw inside ftp or ssh would only give a shell with
very few rights.

7.3.2 No auth programs
Programs can discard all the security tokens they have and
become “noauth” programs. This can be used to process
untrusted contents, like a ghostscript interpreter running on
contents coming from an untrusted source. A security flaw
inside the interpreter could not allow a malicious postscript
file to damage your own files, since the interpreter discarded
the “UID” security token before processing the data.

8. TECHNICAL INTERLUDE: VIRTUAL MEM-
ORY

8.1 The concept of virtual address space
On modern computers, programs run inside a virtual ad-
dress space: the memory addresses a program uses in its
instructions are not real physical addresses, but only virtual
addresses. The hardware (MMU, which stands for Mem-
ory Management Unit) does a translation between virtual
address and physical address before issuing queries on the
memory bus.

The goals of virtual address spaces are many:

• It allows kernel to implement memory protection eas-
ily: a physical memory zone with no corresponding
virtual address is automatically unreachable for the
program,

• It allows code and data to be loaded at arbitrary po-
sition inside memory, which is crucial for multitasking
systems,



(mmenal@drizzt, 42) ~ $ id

uid=1004(mmenal) gid=1004(mmenal) groups=1004(mmenal),40(src),

50(staff),100(users),518(friends),642(hurdfr)

(mmenal@drizzt, 43) ~ $ settrans -cgap ftp /hurd/hostmux /hurd/ftpfs /

(mmenal@drizzt, 44) ~ $ cd ftp

(mmenal@drizzt, 45) ~/ftp $ ls

(mmenal@drizzt, 46) ~/ftp $ cd ftp.fr.debian.org

(mmenal@drizzt, 47) ~/ftp/ftp.fr.debian.org $ ls

debian debian-cd debian-non-US

(mmenal@drizzt, 48) ~/ftp/ftp.fr.debian.org $ ls debian/

README README.mirrors.html README.non-US dists

indices ls-lR.gz pool tools

README.pgp README.CD-manufacture README.mirrors.txt doc

ls-lR ls-lR.patch.gz project

(mmenal@drizzt, 49) ~/ftp/ftp.fr.debian.org $ head -n 2 debian/README

See http://www.debian.org/ for information about Debian GNU/Linux.

Three Debian releases are available on the main site:

(mmenal@drizzt, 50) ~/ftp/ftp.fr.debian.org $ cd ..

(mmenal@drizzt, 51) ~/ftp $ ls

ftp.fr.debian.org

(mmenal@drizzt, 52) ~/ftp $

Figure 1: A translator: ftpfs

• It allows easy sharing of memory between application,

• It allows easy use of backing stores (like hard disk) to
free rarely used memory in time of memory pressure
(swapping)

8.2 Segmentation
In the segmentation scheme, a virtual memory address is
a SEG:OFFS pair. Each segment has a base, a size, and
a protection mode (read-only or not, . . . ). The physical
address is computed by adding the offset to the base of the
segment, and checking if it does not overflow the segment
size. This is a very simple operation for the hardware.

Usually, segments can be omitted, using a default one (or
a default one for the code, a different default one for the
stack, and a third one for data), but programs wanting to
use some features like memory sharing have to be aware of
segments.

Additionnaly, the granularity of segmentation is usually low,
and moving a full segment to back storage can be very slow.
Another drawback is that a segment must be contiguous in
physical memory, creating fragmentation problems.

8.3 Paging
Paging is amore flexible VM design than segmentation. The
virtual addess space is linear and contiguous (going from 0
to 232 − 1 on ia-32), and divided in small pages (of 4096
bytes on ia-32). Each virtual page is mapped to a physical
page, or marked as invalid in a page table. This scheme
allows better granularity, and is completely transparent for
programs. Each process has is own mapping between virtual
memory and physical memory, and memory sharing can be
done by mapping pages to the same physical frames. This

scheme requires more processing from the MMU, and such
conversion between virtual addresses and physical addresses
are cached in a special cache called TLB (Translation Look-
aside Buffer).

When a page marked as invalid is accessed, a “page fault”
exception occurs, and the control is given to the kernel. The
operating system can then reload the page if it was trans-
ferred to back-end storage, and allow the faulting program
to go on.

9. MEMORY HANDLING IN GNU/HURD
9.1 Paging with Mach
Mach takes the decision of which page to keep and which
page to discard (move to back-end storage) in time of mem-
ory pressure, using a LRU (Least Recently Used) algorithm;
but the pagers are in user-space. When a page has to be
evicted from memory, Mach sends an IPC to the user-space
pager associated with the page; it’s up to the pager to save
it somewhere. When a page fault occurs, Mach asks to the
pager to bring back the page to memory, and then resumes
the faulting application.

9.2 Some applications
User space pagers can be used to implement different kind
of backing stores: hard disks, compressed memory, a remote
computer through networking, . . . Several pagers can handle
different parts of the address space of the same task.

9.2.1 The use in diskfs
The library used by “regular” filesystem translators (like
ext2fs, iso9660fs, fatfs, . . . ) works by mapping in memory
all the metadata, and then using only pointer indirection
to access to the metadata. The GNU Mach VM handles all



the caching, and a user-space pager is used to load and write
pages to/from the backing store.

The problem is that, for filesystems with metadata spread all
over the partition (like ext2fs), the whole partition has to be
mapped into memory. That’s why many diskfs translators
are limited to 2GB partitions on IA-32 (and that’s why fatfs
isn’t limited to 2GB - the FAT is located at the beginning
of the partition, so the only limitation is to have the FAT
be less than 2GB - I’m not sure it’s even possible to have a
FAT filesystem that has a 2GB FAT).

Two possible solutions for this problem are either to set-up
a tree of intelligent specialized pagers, or to use a cache of
mappings, creating and destroying mappings of meta-data
as needed. The current implementation of ext2fs in De-
bian GNU/Hurd contains a patch from Ognyan to cover
this problem. It implements a caching of mappings, with
static mapping of fixed metadata (since in ext2, some meta-
data are in fixed places, and others can be anywhere in the
filesystem).

10. CURRENT STATE OF GNU/HURD
Currently, GNU/Hurd works. You can boot it, you can run
XFree86, you can run Emacs or the Gimp, play a tetrinet
game, host a web server, . . . The Debian GNU/Hurd now fills
4 CDs wide (of working binaries), and we have a support for
POSIX threads thanks to Neal !

But, it is true that many features are missing, and many
limitations are still present. The whole system is not stable
yet, nor optimized (and therefore is very slow). In addition,
Mach brings many limitations, performance costs, and GNU
Mach is not stable either. We are still far from a “1.0”
release, but it’s up to you to help us !

11. THE FUTURE
11.1 The L4 microkernel
L4 is family of microkernels. There are several versions of
the L4 specification (covering both API and ABI), each of
them having one or more implementation. The Hurd will
be based, at first, on the Pistachio version (the reference
implementation of the newest L4 specifications, X.2).

11.1.1 L4Ka philosophy
The philosophy behind the whole project can be summarized
in a few points:

• Defining basic and orthogonal concepts.

• Providing only the most basic mechanisms inside the
kernel.

• Make the smallest possible micro-kernel (nano-kernel).
Hazelnut (an implementation of L4 version X.0) is only
12K once booted !

• Always keep performance issues in mind.

To achieve that, one of the main focus of the L4Ka work
was to provide very fast IPCs:

• Synchronous IPCs, with no need to buffer or copy data.
We can still do asynchronous RPCs on top of syn-
chronous IPCs (the data transfer is synchronous, but
not necessary the processing)

• Smaller code: less pollution of cache lines. This was
one of the major problem of Mach IPC.

• Optimizing technics like address space multiplexing
(enables us to do a context switch without flushing
the TLB).

Very few things are still inside the kernel (the whole Pista-
chio provides 11 system calls):

• IPC primitives

• Scheduling primitives (but no policy)

• Memory handling primitives (but no policy)

• I/O primitives (but no device drivers)

11.2 L4 security
With L4, every delicate operation is performed using RPCs.
Therefore, controlling the IPCs an application can do, al-
lows the system (or a specific application like a debugger)
to control the application completely, from a security point
of view at least.

11.2.1 Clans & Chiefs
This was the security model of Hazelnut. In this model, a
clan is composed of all the tasks created by the same one
task. The creator is the chief of the clan. In the Clans &
Chiefs model, an IPC is only allowed from a task to:

• a member of his own clan (a brother)

• his chief (his father)

• a member of a clan he created (a direct son)

All other IPCs are directed through the shortest path of
chiefs. Each chief can drop or modify the message.

11.2.2 IPC redirect
The new security model is called IPC redirect: with each
thread is associated a redirector (another thread of the same
task, or more often another task) controling incoming and/or
outgoing IPCs. Redirectors can be changed at run-time, and
can be stacked (setting a redirector to a thread already act-
ing as a redirector).

This new system was designed for two reasons: first Clans
& Chiefs was too complex and too slow (the chain could be
long, and even if a single IPC is fast, a huge amount of them
will take some time); but mostly it was a decision upon the
OS policy, and in the L4Ka philosophy such decisions must
be kept outside of the kernel.

It is possible to implement Clans & Chiefs on top of IPC
redirect with the proper redirectors.



11.2.3 Some possible usages
The IPC redirect mechanism can be very useful, for example
to monitor applications (for debugging, for profiling, for se-
curity, just to keep logs of what the program did, . . . ); or to
allow sand-boxing. Sand-boxing is running untrusted code
inside a sand-box, the sand-box preventing the code to inter-
act directly with the operating system. With sand-boxing,
you could even run untrusted binary code directly on the
main CPU without any need of virtual machine, and with-
out taking any risk from the security point of view. This
can be very useful for interactive web, or even to run the
rendering engine of a web browser (and this way protect the
system from a security flaw inside the browser).

APPENDIX
A. REFERENCES
GNU http://www.gnu.org

The GNU Hurd http://hurd.gnu.org

Debian GNU/Hurd http://www.debian.org/ports/hurd

HurdFr http://hurdfr.org or #hurdfr on irc.freenode.net

L4 http://www.l4ka.org

The GNU manifesto http://www.gnu.org/gnu/manifesto.html


